
CrazyDrill Flex PATENTED

CRAZYDRILL Flex

Mikron Tool offers with CrazyDrill Flex a solid carbide drill for deep hole drilling up to 50 x d. Diameter range from 0.1 to 2.0 mm with versions for steel, titanium and stainless materials. The drill versions 20 x d and 30 x d (for steel and titanium) are cooled externally. The drill version 50 x d has through coolant channels integrated in the shank same as the version 30 x d for stainless steel (CrazyDrill Flex SST-Inox).

The straight connecting element between the cutting body and the shaft (neck) gives the carbide drill CrazyDrill Flex the length required for drilling deep holes up to a bore depth of 50 x d and makes it very robust. It allows a much shorter drilling time than drilling with single-lip drills, micro-erosion, or laser methods.

Depending on the material processed, one of three variants with their geometries adapted to the respective materials, will work:

- 50% is achieved. An important requirement to realize straight deep hole drilling.
- deep hole drilling.

DRILLING TOOLS CRAZYDRILL FLEX

The extended neck ensures the flexibility required in order to enable a reliable drilling process even under difficult conditions. It can compensate a center offset of up to 40% of its diameter. Until now, this was only possible with HSS drills. Thanks to the special web thinning, a feed force reduced by

■ In the variant for non-corrosive materials, the degressive helical groove ensures good chip breaking and removal. The cutting geometry is specially designed for CrNi alloys. Thanks to the special web thinning, a feed force reduced by up to 50% is achieved. An important requirement to realize straight

Ξ

Flexible and deep

MICRO DEEP HOLE DRILLING UP TO 50 X D

Mikron Tool offers with CrazyDrill Flex a solid carbide drill for deep hole drilling up to 50 x d. Diameter range from 0.1 to 2.0 mm with versions for steel, titanium and stainless materials. The drill versions 20 x d and 30 x d (for steel and titanium) are cooled externally. The drill version 50 x d has through coolant channels integrated in the shank same as the version 30 x d for stainless steel (CrazyDrill Flex SST-Inox).

- CrazyDrill Flex Steel, drilling depth 20 x d, 30 x d, 50 x d, external cooling up to 30 x d / integrated cooling for 50 x d, coated and uncoated
- CrazyDrill Flex Titanium, drilling depth 30 x d, 50 x d, external cooling up to 30 x d / through coolant channels integrated in the shank for 50 x d
- CrazyDrill Flex SST-Inox, drilling depth 30 x d, 50 x d, through coolant channels integrated in the shank

Flexibility

A flexible center piece ensures flexibility. Therefore the drill can compensate center offsets without breaking off.

Drilling up to 50 x d

The unique drill design (web thinning for low feed force, neck without flutes for high stability) enables deep hole drilling up to 50 x d.

DRILLING TOOLS CRAZYDRILL FLEX

Ξ

PATENTED	Steel		Titanium	SST-Inox	
	20 / 30 /	50 x d	30 / 50 x d	30 / 50 x d	
	 Integrated / Exter Coated / Uncoate Ø0.2 - 2.0 mm w Ø0.1 - 1.2 mm w 	ed <i>v</i> ith coating	 Integrated / External cool Uncoated Ø0.1 - 1.2 mm 	Integrated cooling Coated Ø0.2 - 2.0 mm	 1 SHAFT The sturdy carbide shaft guarantees high circular accuracy and thus t 2 COOLING Ally file 50 and a minimum bible 51 a CST in a factor interaction of the statement of the statem
		1			 All of the 50 x d versions and the Flex SST-Inox feature integrated coolin cooling of the cutting edges from just 15 bar. The special arrangement which guarantees regular and significant cooling of the drill tip and f 3 CENTER PIECE: FLEXIBILITY AND STABILITY - PATENTED A flexible center piece with a reduced cross-section ensures elasticity (f compression) compared to drilling with a through flute. The micro de 40% of its diameter without breaking off. Until now, this was only 4 SOLID CARBIDE The fine grained solid carbide developed for the CrazyDrill Flex is very requirements for the machining of steels, titanium, and non-corrosive
		4	3	4	 5 COATING The high-performance coating eXedur RIP is resistant to heat and we removal. The result is a long tool life. 6A DEGRESSIVE HELICAL GROOVE - PATENTED The degressive helical groove of the CrazyDrill Flex SST-Inox with its u It ensures good chip breaking in the front part and quick chip remova 6B HELICAL GROOVES The geometry of the helical grooves for the steel and titanium version and quick chip removal are guaranteed. 7 GEOMETRY
page 3	99 page 407	68 7 7 7 page 415	6B 7 page 423 page 42	6A 7	The tip geometry is specially developed to guarantee high cutting sta web thinning, less penetration force is required when drilling. Drill tip

CrazyDrill Flex Steel

CrazyDrill Flex Titanium

DRILLING TOOLS CRAZYDRILL FLEX

Ξ

us top drilling precision. poling channels in the shaft. These guarantee continuous targeted nent and shape produce a concentrated jet even at high speeds, nd flushes the chips from the flutes. 06 ty (flection) and provides at the same time higher rigidity (torsion/ deep-hole drill can easily compensate center offsets of up to nly possible with HSS tools. very tough and resistant to heat shock, thus easily meeting the osive and heat-resistant alloys. wear. It prevents chips from adhering and supports their smooth

its unique and patented geometry guarantees high tool stability. noval in the rear.

sions are adapted to the materials machined. Good chip breaking

stability, self-centering, and short chips. Thanks to the clever

CrazyDrill Flex SST-Inox

_				COMPONENTS				
SHORT MACHINING TIME	1	to 10 times faster	APPLICATION DOMAINS	COMPONENTS EXAMPLES	MATERIALS GROUPS	Mat. no.	EXAMPLES DIN	AISI / ASTN
HIGH DEGREE OF PROCES	•		Dental	Dental implant	Group P Unalloyed and	1.0401	C15	1015
HIGH DEGREE OF PRECISIO	ON du	e to small tolerances	Aerospace industry	Injection nozzle	alloyed steel	1.3505	100Cr6	5210
			Medical technology	Surgical instrument		1.2436	X210CrW12	D4/0
					Group M Stainless steel	1.4105	X6CrMoS17	430
			Tool and mold making	Air vent hole for glass form mould		1.4112	X46Cr13	420
	DATA	MIKRON TOOL	Automotive industry	Turned part	—	1.4542	X5CrNiCuNb 16-4	630
		CrazyDrill Flex Steel - Carbide	Mechanical engineering	Drilling holes in		1.4301	X5CrNi 18-10	304
	Tool type	- Coated		Plexiglass	Group K Cast iron	0.7040	GGG40	60-40-
		- External cooling	Watches	Bracelet components	Group N Non ferrous metals	3.2315	AlMgSi1	6351
		2.CFS.30050.1	Electronics / Electrical	Solenoid contactor		3.2163	GD-AlSi9Cu3	A380
						2.004	Cu-OF / CW008A	C1010
COMPONENT		$v_c = 40 \text{ m/min}$ f = 0.012 mm/rev				2.102	CuSn6	C519
Air vent hole for glass form mould	Cutting data	$Q_1 = 1.25 \text{ mm}$ $Q_x = 0.25 \text{ mm}$				2.096	CuAl9Mn2	C6320
MATERIAL CuAl11Fe4Ni4 / 2.0975 / UNS C95800		$Q_x = 0.25$ mm			Group S1 Super alloys	2.4856		INCONE
CHINING 100 air vent holes	Machining time	30 min				2.4665	NiCr22Fe18Mo	HASTELL
d = 0.5 mmDrilling depth 15 mm					Group S2 Titanium	3.7035	Gr.2	B348/
RILLING TOOL					(pure and alloyed)	3.7165	TiAl6V4	B348 / F
on Tool - CrazyDrill Flex Steel - 30 x d	1				Group S3 CrCo alloys	2.4964	CoCr20W15Ni	HAYNE
					Group H1 Hardened steel <55 HRC	1.2510	100MnCrMoW4	01

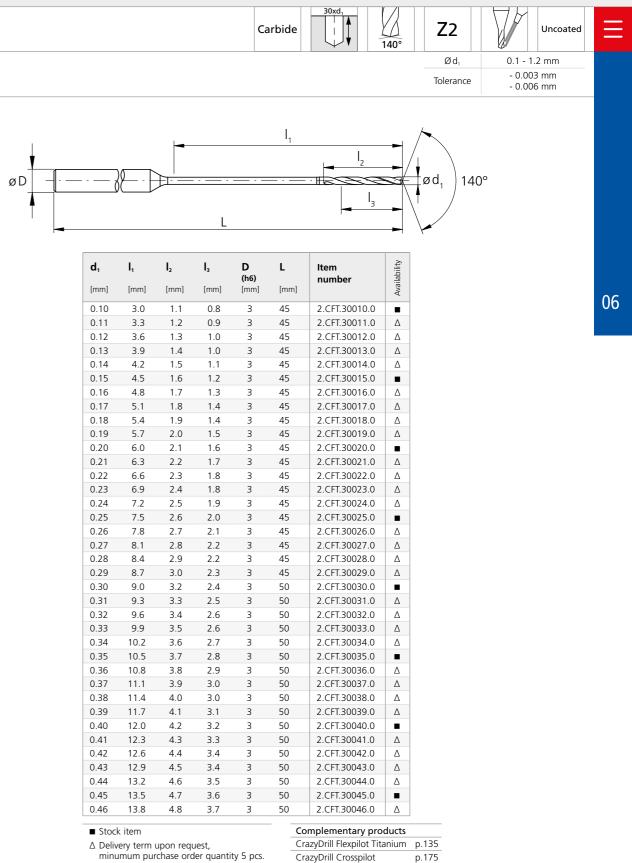
Titanium - 30 x d

DRILLING WITH EXTERNAL COOLING

The solid carbide micro-drill CrazyDrill Flex Titanium is mainly designed for long-chip materials as titanium, titanium alloys and copper. It has a high flexibility thanks to a long and "flexible" section between the tip and the shaft. Therefore the tool is adapted for drilling with process reliability also under difficult conditions. It is able to flex effortlessly 40% of its diameter. This drill is also perfect for deep hole drilling from diameter 0.1 mm with a significantly shorter drilling time compared to the single-lip drill, electro-erosion or laser method.

CrazyDrill Flex Titanium 30 x d is used with external cooling and is uncoated.

We recommend pilot drilling with CrazyDrill Flexpilot Titanium or CrazyDrill Crosspilot on inclined surfaces. For details see drilling process.


Coolant type, pressure and filtration

Recommendations for coolant type, pressure and filtration are on page "drilling process".

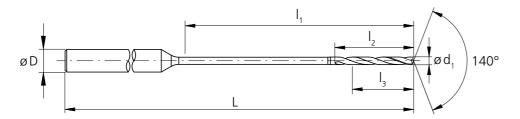
Please note

You couldn't find your suitable version of the CrazyDrill Flex Titanium (diameter, length, cutting direction...)? Ask us about our customized versions!

Regrinding: This product is not suitable for regrinding.

d1	I ₁	l ₂	I,
[mm]	[mm]	[mm]	[mm]
0.10	3.0	1.1	0.8
0.11	3.3	1.2	0.9
0.12	3.6	1.3	1.0
0.13	3.9	1.4	1.0
0.14	4.2	1.5	1.1
0.15	4.5	1.6	1.2
0.16	4.8	1.7	1.3
0.17	5.1	1.8	1.4
0.18	5.4	1.9	1.4
0.19	5.7	2.0	1.5
0.20	6.0	2.1	1.6
0.21	6.3	2.2	1.7
0.22	6.6	2.3	1.8
0.23	6.9	2.4	1.8
0.24	7.2	2.5	1.9
0.25	7.5	2.6	2.0
0.26	7.8	2.7	2.1
0.27	8.1	2.8	2.2
0.28	8.4	2.9	2.2
0.29	8.7	3.0	2.3
0.30	9.0	3.2	2.4
0.31	9.3	3.3	2.5
0.32	9.6	3.4	2.6
0.33	9.9	3.5	2.6
0.34	10.2	3.6	2.7
0.35	10.5	3.7	2.8
0.36	10.8	3.8	2.9
0.37	11.1	3.9	3.0
0.38	11.4	4.0	3.0
0.39	11.7	4.1	3.1
0.40	12.0	4.2	3.2
0.41	12.3	4.3	3.3
0.42	12.6	4.4	3.4
0.43	12.9	4.5	3.4
0.44	13.2	4.6	3.5
0.45	13.5	4.7	3.6
0.46	13.8	4.8	3.7

minumum purchase order quantity 5 pcs.


DRILLING TOOLS CRAZYDRILL FLEX

Titanium - 30 x d

DRILLING WITH EXTERNAL COOLING

d₁	I,	l ₂	I3	D (h6)	L	ltem number	Availability
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		Avai
0.47	14.1	4.9	3.8	3	50	2.CFT.30047.0	Δ
0.48	14.4	5.0	3.8	3	50	2.CFT.30048.0	Δ
0.49	14.7	5.1	3.9	3	50	2.CFT.30049.0	Δ
0.50	15.0	5.3	4.0	3	53	2.CFT.30050.0	
0.51	15.3	5.4	4.1	3	53	2.CFT.30051.0	Δ
0.52	15.6	5.5	4.2	3	53	2.CFT.30052.0	Δ
0.53	15.9	5.6	4.2	3	53	2.CFT.30053.0	Δ
0.54	16.2	5.7	4.3	3	53	2.CFT.30054.0	Δ
0.55	16.5	5.8	4.4	3	53	2.CFT.30055.0	-
0.56	16.8	5.9	4.5	3	53	2.CFT.30056.0	Δ
0.57	17.1	6.0	4.6	3	53	2.CFT.30057.0	Δ
0.58	17.4	6.1	4.6	3	53	2.CFT.30058.0	Δ
0.59	17.7	6.2	4.7	3	53	2.CFT.30059.0	Δ
0.60	18.0	6.3	4.8	3	53	2.CFT.30060.0	
0.61	18.3	6.4	4.9	3	53	2.CFT.30061.0	Δ
0.62	18.6	6.5	5.0	3	53	2.CFT.30062.0	Δ
0.63	18.9	6.6	5.0	3	53	2.CFT.30063.0	Δ
0.64	19.2	6.7	5.1	3	53	2.CFT.30064.0	Δ
0.65	19.5	6.8	5.2	3	53	2.CFT.30065.0	
0.66	19.8	6.9	5.3	3	53	2.CFT.30066.0	Δ
0.67	20.1	7.0	5.4	3	53	2.CFT.30067.0	Δ
0.68	20.4	7.1	5.4	3	53	2.CFT.30068.0	Δ
0.69	20.7	7.2	5.5	3	53	2.CFT.30069.0	Δ
0.70	21.0	7.4	5.6	3	60	2.CFT.30070.0	
0.71	21.3	7.5	5.7	3	60	2.CFT.30071.0	Δ
0.72	21.6	7.6	5.8	3	60	2.CFT.30072.0	Δ
0.73	21.9	7.7	5.8	3	60	2.CFT.30073.0	Δ
0.74	22.2	7.8	5.9	3	60	2.CFT.30074.0	Δ
0.75	22.5	7.9	6.0	3	60	2.CFT.30075.0	
0.76	22.8	8.0	6.1	3	60	2.CFT.30076.0	Δ
0.77	23.1	8.1	6.2	3	60	2.CFT.30077.0	Δ
0.78	23.4	8.2	6.2	3	60	2.CFT.30078.0	Δ
0.79	23.7	8.3	6.3	3	60	2.CFT.30079.0	Δ
0.80	24.0	8.4	6.4	3	60	2.CFT.30080.0	
0.81	24.3	8.5	6.5	3	60	2.CFT.30081.0	Δ
0.82	24.6	8.6	6.6	3	60	2.CFT.30082.0	Δ
0.83	24.9	8.7	6.6	3	60	2.CFT.30083.0	Δ

Stock item

 Δ Delivery term upon request, minumum purchase order quantity 5 pcs.

				Ca	rbide	30xd1	140°	Z2	Uncoated	
								Ød1	0.1 - 1.2 mm	
									- 0.003 mm	
								Tolerance	- 0.006 mm	
				_			2			
1 1	I,	l ₂	I,	D (h6)	L	ltem number	abilit			
mm]	[mm]	[mm]	[mm]	[mm]	[mm]	number	Availability			
.84	25.2	8.8	6.7	3	60	2.CFT.30084.0	Δ			
.85	25.5	8.9	6.8	3	64	2.CFT.30085.0				
.86	25.8	9.0	6.9	3	64	2.CFT.30086.0	Δ			
.87	26.1	9.1	7.0	3	64	2.CFT.30087.0	Δ			
.88	26.4	9.2	7.0	3	64	2.CFT.30088.0	Δ			
.89	26.7	9.3	7.1	3	64	2.CFT.30089.0	Δ			
0.90	27.0	9.5	7.2	3	64	2.CFT.30090.0				
).91	27.3	9.6	7.3	3	64	2.CFT.30091.0	Δ			
0.92	27.6	9.7	7.4	3	64	2.CFT.30092.0	Δ			
).93).94	27.9 28.2	9.8 9.9	7.4 7.5	3	64 64	2.CFT.30093.0 2.CFT.30094.0				
).94).95	28.5	10.0	7.6	3	64	2.CFT.30095.0				
.96	28.8	10.1	7.7	3	64	2.CFT.30096.0	Δ			
).97	29.1	10.2	7.8	3	64	2.CFT.30097.0	Δ			
.98	29.4	10.3	7.8	3	64	2.CFT.30098.0	Δ			
).99	29.7	10.4	7.9	3	64	2.CFT.30099.0	Δ			
.00	30.0	10.5	8.0	3	70	2.CFT.30100.0				
.01	30.3	10.6	8.1	3	70	2.CFT.30101.0	Δ			
.02	30.6	10.7	8.2	3	70	2.CFT.30102.0	Δ			
.03 .04	30.9 31.2	10.8 10.9	8.2 8.3	3	70 70	2.CFT.30103.0 2.CFT.30104.0				
.04	31.5	11.0	8.4	3	70	2.CFT.30105.0				
.06	31.8	11.1	8.5	3	70	2.CFT.30106.0	Δ			
.07	32.1	11.2	8.6	3	70	2.CFT.30107.0	Δ			
.08	32.4	11.3	8.6	3	70	2.CFT.30108.0	Δ			
.09	32.7	11.4	8.7	3	70	2.CFT.30109.0	Δ			
.10	33.0	11.6	8.8	3	70	2.CFT.30110.0				
.11	33.3	11.7	8.9	3	70	2.CFT.30111.0	Δ			
.12	33.6	11.8	9.0	3	70	2.CFT.30112.0	Δ			
.13 .14	33.9 34.2	11.9 12.0	9.0 9.1	3	70 70	2.CFT.30113.0 2.CFT.30114.0				
.14	34.5	12.0	9.2	3	70	2.CFT.30115.0				
.16	34.8	12.1	9.3	3	70	2.CFT.30116.0	Δ			
.17	35.1	12.3	9.4	3	70	2.CFT.30117.0	Δ			
.18	35.4	12.4	9.4	3	70	2.CFT.30118.0	Δ			
.19	35.7	12.5	9.5	3	70	2.CFT.30119.0	Δ			
.20	36.0	12.6	9.6	3	70	2.CFT.30120.0				
							ducto			
Stock	k item				CO CO	mplementary pro	uucis			

DRILLING TOOLS CRAZYDRILL FLEX

Titanium - 30 x d

DRILLING WITH EXTERNAL COOLING | CUTTING DATA OVERVIEW

	DRILLING WITH EXTERNAL COOLING CUTTING DATA OVERVIEW								f [mm/rev]								
						V.	:		Q ₁								Ød1
	Materials	Material	Mat. no.	DIN	AISI/ASTM/UNS	[m/m				0.1	mm	0.2	mm	0.3	mm	0.4	4 mm
	group	material	indu no.	Dire		Ød1≤0.4	Ød1>0.4			f	Q,	f		f	Q,	f	Q
			1.0301	C10	AISI 1010												
	Ρ	Unalloyed carbon	1.0401	C15	AISI 1015												
$\land IM$		steel	1.1191	C45E/CK45	AISI 1045												
$\langle \mathcal{Y} $		Rm < 800 N/mm ²	1.0044	S275JR	AISI 1020												
			1.0715	11SMn30	AISI 1215												
			1.5752	15NiCr13	ASTM 3415 / AISI 3310												
ω			1.7131	16MnCr5	AISI 5115												
		Low alloyed steel	1.3505	100Cr6	AISI 52100										Recomm	nended: C	lrazyDr
		Rm > 900 N/mm ²	1.7225	42CrMo4	AISI 32100												
d1			1.2842	90MnCrV8	AISI O2												
		High alloyed tool	1.2379	X153CrMoV12	AISI D2												
Q1		steel	1.2436	X210CrW12	AISI D4/D6												
		Rm < 1200 N/mm ²	1.3343	HS6-5-2C	AISI M2 / UNS T11302												
			1.3355	HS18-0-1	AISI T1 / UNS T12001												
		Stainless steel	1.4016	X6Cr17	AISI 430 / UNS \$43000												
<u> </u>	Μ	ferritic	1.4105	X6CrMoS17	AISI 430F												
		Stainless steel martensitic Stainless steel	1.4034	X46Cr13	AISI 420C												
			1.4112	X90CrMoV18	AISI 440B												
			1.4542	X5CrNiCuNb 16-4	AISI 630 / ASTM 17-4 PH										Recomme	ndad: Cra	Drill
		martensitic – PH	1.4545	X5CrNiCuNb 15-5	ASTM 15-5 PH										Necomme	nueu. Cia	zyDTIII
			1.4301	X5CrNi 18-10	AISI 304												
		Stainless steel	1.4435	X2CrNiMo 18-14-3	AISI 316L												
		austenitic	1.4441	X2CrNiMo 18-15-3	AISI 316LM												
			1.4539	X1NiCrMoCu 25-20-5	AISI 904L												
		•	0.6020	GG20	ASTM 30												
			0.6030	GG30	ASTM 40B												
	K	Cast iron	0.7040	GGG40	ASTM 60-40-18										Recomm	ended: C	razyDri
			0.7060	GGG60	ASTM 80-60-03												
		Aluminium alloy	3.2315	AlMgSi1	ASTM 6351												
	N	wrought	3.4365	AlZnMgCu1.5	ASTM 7075										Recomm	ended: C	razyDri
		Aluminium alloy	3.2163	GD-AlSi9Cu3	ASTM A380												
		cast	3.2381	GD-AlSi10Mg	UNS A03590												
		Copper	2.004	Cu-OF / CW008A	UNS C10100	5 – 40	20 - 40		7xd1	0.005	0.5xd1	0.020	0.5xd1	0.040	0.5xd1	0.060	0.5x
			2.0065	Cu-ETP / CW004A	UNS C11000												
		Brass lead free	2.0321	CuZn37 CW508L	UNS C27400										Recomme	nded: Cra	azvDrill
			2.036	CuZn40 CW509L	UNS C28000												,
		Brass, Bronze	2.0401	CuZn39Pb3 / CW614N													
		Rm < 400 N/mm ²	2.102	CuSn6	UNS C51900										Recomm	ended: C	razvDri
		Bronze	2.0966	CuAl10Ni5Fe4	UNS C63000												. ,
		Rm < 600 N/mm ²	2.096	CuAl9Mn2	UNS C63200												
			2.4856		Inconel 625												
	S ₁	Cuper allours	2.4668		Inconel 718										Recomme	nded: Cra	azyDrill
	1	Super alloys	2.4617	NiMo28	Hastelloy B-2										necomme		zybriii
			2.4665	NiCr22Fe18Mo	Hastelloy X												
		Titanium nuro	3.7035	Gr.2	ASTM B348 / F67	5 – 20	20 - 30		3xd1	0.002	0.2xd1	0.004	0.25xd1	0.006	0.25xd1	0.008	0.25
	S ₂	Titanium pure	3.7065	Gr.4	ASTM B348 / F68	5 - 20	20 - 30		5701	0.002	0.2X01	0.004	0.23X01	0.000	0.23X01	0.006	0.25
	2	Titanium allaus	3.7165	TiAl6V4	ASTM B348 / F136	5 – 20	20 - 40			0.000	0.5.41	0.000	0.25.41	0.000	0.2	0.010	0.5
		Titanium alloys	9.9367	TiAl6Nb7	ASTM F1295	5 - 20	20 - 40		3xd1	0.003	0.5xd1	0.006	0.25xd1	0.009	0.3xd1	0.016	0.5x
	S ₃		2.4964	CoCr20W15Ni	Haynes 25										Bocomme	adad: C	
	3	CrCo alloys		CrCoMo28	ASTM F1537										Recomme	nded: Cra	zyuriil
		Hardened steel															
	H ₁	< 55 HRC	1.2510	100MnCrMoW4	AISI O1												
	H ₂	Hardened steel ≥ 55 HRC	1.2379	X153CrMoV12	AISI D2												
	2	_ 55 mile															

DRILLING TOOLS CRAZYDRILL FLEX

• Exce	ellent 🛈 🤇	Good O A			ION FOR USE ecommended	M S		Ξ
						K S	\mathbb{A} H ₂	
/] J1								
11 1 Q _x	0.6 f	mm Q x	0.8 f	mm Q x	1.0 - 1 f	.2 mm Q _x		
Drill Fle	x Steel 30	x d1						06
ill Flex :	SST-Inox 30) x d1						
Drill Flex	x Steel 30 :	x d1					-	
Drill Fle	x Steel 30 :	x d1					-	
.5xd1	0.120	0.5xd1	0.180	0.5xd1	0.200	0.5xd1		
ill Flex !	SST-Inox 30	D x d1						
Drill Fle:	x Steel 30 :	x d1					-	
ill Flex :	SST-Inox 30) x d1						
.25xd1	0.012	0.3xd1	0.016	0.5xd1	0.024	0.5xd1	-	
).5xd1	0.024	0.5xd1	0.032	0.5xd1	0.040	0.5xd1		
ill Flex	SST-Inox 30) x d1						
							-	

Drilling process CrazyDrill Flex

PRECISE AND EFFICIENT DRILLING FROM Ø 0.1 MM

Coolant type, pressure and filtration

Coolant type: For best results, Mikron Tool recommends the use of cutting oil as coolant fluid. Alternatively, emulsion of 8% or more with EP-Additives (Extreme-Pressure-Additives) can be used with good results as well.

Filter: The large cooling channels allow a standard filter. Filter quality \leq 0.050 mm.

For tools with external cooling no specific parameters have to be considered concerning filter.

Coolant pressure: To ensure a reliable drilling process, the following minimal pressures are needed (see chart). Higher pressure is generally better for the cooling and flushing effect.

Revolution	[giri/min]	≤ 10′000	> 10
Minimal pressure	[bar]	15	3

For tools with external cooling no specific parameters have to be considered concerning coolant pressure. But it must be ensured that the coolant is conducted directly to the drill tip, thus cooling and lubricating the drill perfectly and flushing away the chips.

Tool holders

For detailed indications for tool holders see chapter "Technical information".

DRILLING TOOLS CRAZYDRILL FLEX

Ξ

06

10'000	

30

CRAZYDRILL

Drilling process CrazyDrill Flex

PRECISE AND EFFICIENT DRILLING FROM Ø 0.1 MM

CrazyDrill Flex 20 x d, 30 x d, 50 x d

Mikron Tool recommends pilot drilling for all types of CrazyDrill Flex:

CrazyDrill Flex SST-Inox

- **CrazyDrill Pilot SST-Inox** as pilot drill
- **CrazyDrill Crosspilot** as pilot drill on inclined surfaces

CrazyDrill Flex Steel

- **CrazyDrill Flexpilot Steel** as pilot drill
- **CrazyDrill Crosspilot** as pilot drill on inclined surfaces

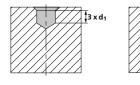
CrazyDrill Flex Titanium

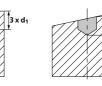
- **CrazyDrill Flexpilot Titanium** as pilot drill
- **CrazyDrill Crosspilot** as pilot drill on inclined surfaces

Pilot drilling and drilling

Pilot drilling with CrazyDrill Flexpilot / CrazyDrill Pilot SST-Inox is the perfect starting point for accurate drilling (position and alignment accuracy) and a stable machining process. This is also valid for the pilot drill CrazyDrill Crosspilot on inclined surfaces.

The quality of drilling (position and alignment accuracy, no measurable transition from pilot hole to follow-up hole) and a stable machining process are guaranteed by means of a predetermined tool.

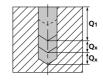

DRILLING PROCESS


Drilling as per DIN 66025 / PAL

G83 deep-drilling cycle with chip break and chip removal (pecks) Q = depth of the respective peck

1 | PILOT DRILLING

- With CrazyDrill Pilot SST-Inox (straight surfaces) or CrazyDrill Crosspilot (inclined surfaces) for the version CrazyDrill Flex SST-Inox.
- With CrazyDrill Flexpilot Steel resp. Titanium (straight surfaces) or CrazyDrill Crosspilot (inclined surfaces) for the version CrazyDrill Flex Steel resp. Titanium.



2 | DRILLING

Drilling with CrazyDrill Flex SST-Inox / CrazyDrill Flex Steel / Titanium up to maximum drilling depth Q1 in one step (see cutting data table), with subsequent chip removal.

Further drilling steps Q_X as per cutting data table, with subsequent chip removal.

Note:

Between the drilling steps, the drill may exit completely from the bore. Do not take the drill completely out from the bore in case of resonant vibration. After the drill reached desired cutting depth, return at increased feed rate (or in case of perfect conditions rapid traverse) to safety position.

DRILLING TOOLS CRAZYDRILL FLEX

Ξ

06

