
PATENTED

CrazyDrill Flex

FLEXIBILITY AND SOLID CARBIDE: NO CONTRARIETY

Mikron Tool offers with CrazyDrill Flex a solid carbide drill for deep hole drilling up to $50 \times d$. Diameter range from 0.1 to 2.0 mm with versions for steel, titanium and stainless materials. The drill versions $20 \times d$ and $30 \times d$ (for steel and titanium) are cooled externally. The drill version $50 \times d$ has through coolant channels integrated in the shank same as the version $30 \times d$ for stainless steel (CrazyDrill Flex SST-Inox).

The straight connecting element between the cutting body and the shaft (neck) gives the carbide drill CrazyDrill Flex the length required for drilling deep holes up to a bore depth of 50 x d and makes it very robust. It allows a much shorter drilling time than drilling with single-lip drills, micro-erosion, or laser methods.

Depending on the material processed, one of three variants with their geometries adapted to the respective materials, will work:

- The extended neck ensures the flexibility required in order to enable a reliable drilling process even under difficult conditions. It can compensate a center offset of up to 40% of its diameter. Until now, this was only possible with HSS drills. Thanks to the special web thinning, a feed force reduced by 50% is achieved. An important requirement to realize straight deep hole drilling.
- In the variant for non-corrosive materials, the degressive helical groove ensures good chip breaking and removal. The cutting geometry is specially designed for CrNi alloys. Thanks to the special web thinning, a feed force reduced by up to 50% is achieved. An important requirement to realize straight deep hole drilling.

Flexible and deep

MICRO DEEP HOLE DRILLING UP TO 50 X D

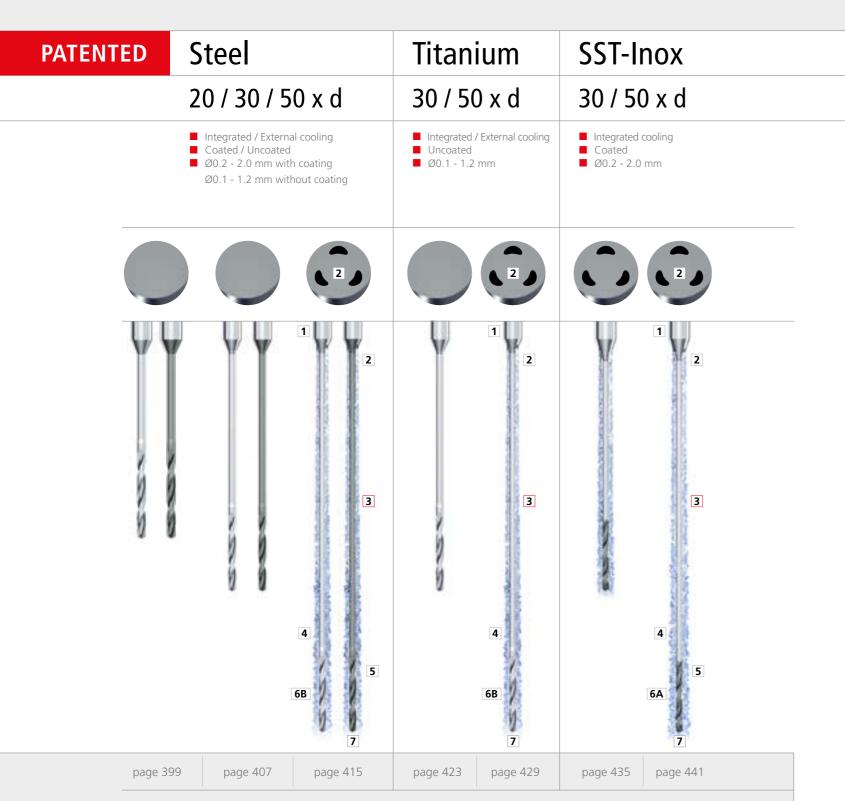
Mikron Tool offers with CrazyDrill Flex a solid carbide drill for deep hole drilling up to $50 \times d$. Diameter range from 0.1 to 2.0 mm with versions for steel, titanium and stainless materials. The drill versions $20 \times d$ and $30 \times d$ (for steel and titanium) are cooled externally. The drill version $50 \times d$ has through coolant channels integrated in the shank same as the version $30 \times d$ for stainless steel (CrazyDrill Flex SST-Inox).

- CrazyDrill Flex Steel, drilling depth 20 x d, 30 x d, 50 x d, external cooling up to 30 x d / integrated cooling for 50 x d, coated and uncoated
- CrazyDrill Flex Titanium, drilling depth 30 x d, 50 x d, external cooling up to 30 x d / through coolant channels integrated in the shank for 50 x d
- CrazyDrill Flex SST-Inox, drilling depth 30 x d, 50 x d, through coolant channels integrated in the shank

Flexibility

A flexible center piece ensures flexibility. Therefore the drill can compensate center offsets without breaking off.

Drilling up to 50 x d


The unique drill design (web thinning for low feed force, neck without flutes for high stability) enables deep hole drilling up to 50 x d.

DRILLING TOOLS

CRAZYDRILL FLEX

06

1 | SHAFT

CRAZYDRILL

The sturdy carbide shaft guarantees high circular accuracy and thus top drilling precision.

2 | COOLING

All of the 50 x d versions and the Flex SST-Inox feature integrated cooling channels in the shaft. These guarantee continuous targeted cooling of the cutting edges from just 15 bar. The special arrangement and shape produce a concentrated jet even at high speeds, which guarantees regular and significant cooling of the drill tip and flushes the chips from the flutes.

3 | CENTER PIECE: FLEXIBILITY AND STABILITY - PATENTED

A flexible center piece with a reduced cross-section ensures elasticity (flection) and provides at the same time higher rigidity (torsion/compression) compared to drilling with a through flute. The micro deep-hole drill can easily compensate center offsets of up to 40% of its diameter without breaking off. Until now, this was only possible with HSS tools.

4 | SOLID CARBIDE

The fine grained solid carbide developed for the CrazyDrill Flex is very tough and resistant to heat shock, thus easily meeting the requirements for the machining of steels, titanium, and non-corrosive and heat-resistant alloys.

5 | COATING

The high-performance coating eXedur RIP is resistant to heat and wear. It prevents chips from adhering and supports their smooth removal. The result is a long tool life.

6A | DEGRESSIVE HELICAL GROOVE - PATENTED

The degressive helical groove of the CrazyDrill Flex SST-Inox with its unique and patented geometry guarantees high tool stability. It ensures good chip breaking in the front part and quick chip removal in the rear.

6B | HELICAL GROOVES

The geometry of the helical grooves for the steel and titanium versions are adapted to the materials machined. Good chip breaking and quick chip removal are guaranteed.

7 | GEOMETRY

The tip geometry is specially developed to guarantee high cutting stability, self-centering, and short chips. Thanks to the clever web thinning, less penetration force is required when drilling.

CrazyDrill Flex Steel

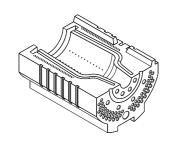
CrazyDrill Flex Titanium

CrazyDrill Flex SST-Inox

394 Infimikron tool

Benefits and applications

THE SMALL DRILL WITH INTEGRATED COOLING FOR DRILLING DEEP HOLES


SHORT MACHINING TIME

up to 10 times faster

HIGH DEGREE OF PROCESS RELIABILITY | due to flexible center piece

■ HIGH DEGREE OF PRECISION

due to small tolerances

COMPONENT

Air vent hole for glass form mould

CuAl11Fe4Ni4 / 2.0975 / UNS C95800

MACHINING

- 100 air vent holes
- d = 0.5 mm
- Drilling depth 15 mm

DRILLING TOOL

Mikron Tool - CrazyDrill Flex Steel - 30 x d

DATA	MIKRON TOOL
Tool type	CrazyDrill Flex Steel - Carbide - Coated - External cooling
Item number	2.CFS.30050.1
Cutting data	$v_c = 40 \text{ m/min}$ f = 0.012 mm/rev $Q_1 = 1.25 \text{ mm}$ $Q_x = 0.25 \text{ mm}$
Machining time	30 min

APPLICATION DOMAINS	COMPONENTS EXAMPLES
Dental	Dental implant
Aerospace industry	Injection nozzle
Medical technology	Surgical instrument
Tool and mold making	Air vent hole for glass form mould
Automotive industry	Turned part
Mechanical engineering	Drilling holes in Plexiglass
Watches	Bracelet components
Electronics / Electrical	Solenoid contactor

MATERIALS		EXAMPLES			
GROUPS	Mat. no.	DIN	AISI / ASTM / UNS		
Group P Unalloyed and	1.0401	C15	1015		
alloyed steel	1.3505	100Cr6	52100		
	1.2436	X210CrW12	D4 / D6		
Group M Stainless steel	1.4105	X6CrMoS17	430F		
	1.4112	X46Cr13	420C		
	1.4542	X5CrNiCuNb 16-4	630		
	1.4301	1.4301 X5CrNi 18-10			
Group K Cast iron	0.7040	GGG40	60-40-18		
Group N Non ferrous metals	3.2315	AlMgSi1	6351		
	3.2163	GD-AlSi9Cu3	A380		
	2.004	Cu-OF / CW008A	C10100		
	2.102	CuSn6	C51900		
	2.096	CuAl9Mn2	C63200		
Group S1 Super alloys	2.4856		INCONEL 625		
	2.4665	NiCr22Fe18Mo	HASTELLOY X		
Group S2 Titanium	3.7035	Gr.2	B348 / F67		
(pure and alloyed)	3.7165	TiAl6V4	B348 / F136		
Group S3 CrCo alloys	2.4964	CoCr20W15Ni	HAYNES 25		
Group H1 Hardened steel <55 HRC	1.2510	100MnCrMoW4	01		

396 | Infimikron tool

www.mikrontool.com | 397

Flex STEEL

Steel - 20 x d - coated / uncoated

0.1 - 1.2 mm - 0.003 mm Tolerance - 0.006 mm

Uncoated

Coated

The solid carbide micro-drill CrazyDrill Flex Steel is mainly designed for steels, cast iron, aluminum alloys, brass and bronze. It has a high flexibility thanks to a long and "flexible" section between the tip and

the shaft. So the tool is adapted for drilling with process reliability also under difficult conditions. It is able to flex effortlessly 40% of its diameter. This drill is also perfect for deep hole drilling from diameter 0.1 mm with a significantly shorter drilling time compared to the single-lip drill, electro-erosion or laser method.

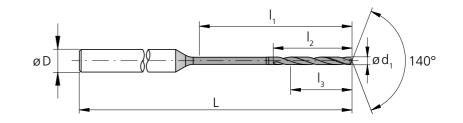
CrazyDrill Flex Steel 20 x d is used with external cooling. The coated version (eXedur RIP), compared to the uncoated one, is perfect for drilling larger series. Also the surface quality profits from the high-performance coating.

We recommend pilot drilling with CrazyDrill Flexpilot Steel or CrazyDrill Crosspilot on inclined surfaces. For details see drilling process.

Coolant type, pressure and filtration

DRILLING WITH EXTERNAL COOLING

Recommendations for coolant type, pressure and filtration are on page "drilling process".


Please note

You couldn't find your suitable version of the CrazyDrill Flex Steel - coated / uncoated (diameter, length, cutting direction...)? Ask us about our customized versions!

Regrinding: This product is not suitable for regrinding.

$\mathbf{d}_{\scriptscriptstyle{1}}$	d ₁	I ₁	l ₂	I ₃	D (h6)	L	Item number	pa:	Uncoated	Availability
[mm]	[inch]	[mm]	[mm]	[mm]	[mm]	[mm]		Coated	Unco	Avai
0.10		2.0	1.1	8.0	3	40	2.CFS.20010	-	.0	
0.11		2.2	1.2	0.9	3	40	2.CFS.20011	-	.0	Δ
0.12		2.4	1.3	1.0	3	40	2.CFS.20012	-	.0	Δ
0.13		2.6	1.4	1.0	3	40	2.CFS.20013	-	.0	Δ
0.14		2.8	1.5	1.1	3	40	2.CFS.20014	-	.0	Δ
0.15		3.0	1.6	1.2	3	40	2.CFS.20015	-	.0	
0.16		3.2	1.7	1.3	3	40	2.CFS.20016	-	.0	Δ
0.17		3.4	1.8	1.4	3	40	2.CFS.20017	-	.0	Δ
0.18		3.6	1.9	1.4	3	40	2.CFS.20018	-	.0	Δ
0.19		3.8	2.0	1.5	3	40	2.CFS.20019	-	.0	Δ
0.20		4.0	2.1	1.6	3	45	2.CFS.20020	.1	.0	-
0.21		4.2	2.2	1.7	3	45	2.CFS.20021	.1	.0	Δ
0.22		4.4	2.3	1.8	3	45	2.CFS.20022	.1	.0	Δ
0.23		4.6	2.4	1.8	3	45	2.CFS.20023	.1	.0	Δ
0.24		4.8	2.5	1.9	3	45	2.CFS.20024	.1	.0	Δ
0.25		5.0	2.6	2.0	3	45	2.CFS.20025	.1	.0	-
0.26		5.2	2.7	2.1	3	45	2.CFS.20026	.1	.0	Δ
0.27		5.4	2.8	2.2	3	45	2.CFS.20027	.1	.0	Δ
0.28		5.6	2.9	2.2	3	45	2.CFS.20028	.1	.0	Δ
0.29		5.8	3.0	2.3	3	45	2.CFS.20029	.1	.0	Δ
0.30		6.0	3.2	2.4	3	45	2.CFS.20030	.1	.0	•
0.31		6.2	3.3	2.5	3	45	2.CFS.20031	.1	.0	Δ
0.32		6.4	3.4	2.6	3	45	2.CFS.20032	.1	.0	Δ
0.33		6.6	3.5	2.6	3	45	2.CFS.20033	.1	.0	Δ
0.34		6.8	3.6	2.7	3	45	2.CFS.20034	.1	.0	Δ
0.35		7.0	3.7	2.8	3	45	2.CFS.20035	.1	.0	-
0.36		7.2	3.8	2.9	3	45	2.CFS.20036	.1	.0	Δ
0.37		7.4	3.9	3.0	3	45	2.CFS.20037	.1	.0	Δ
0.38		7.6	4.0	3.0	3	45	2.CFS.20038	.1	.0	Δ
0.39		7.8	4.1	3.1	3	45	2.CFS.20039	.1	.0	Δ
0.396	1/64	8.0	4.2	3.2	3	45	2.CFS.20F164	.1	-	
0.40		8.0	4.2	3.2	3	45	2.CFS.20040	.1	.0	-
0.41		8.2	4.3	3.3	3	45	2.CFS.20041	.1	.0	Δ
0.42		8.4	4.4	3.4	3	45	2.CFS.20042	.1	.0	Δ
0.43		8.6	4.5	3.4	3	45	2.CFS.20043	.1	.0	Δ
0.44		8.8	4.6	3.5	3	45	2.CFS.20044	.1	.0	Δ
0.45		9.0	4.7	3.6	3	45	2.CFS.20045	.1	.0	-
0.46		9.2	4.8	3.7	3	45	2.CFS.20046	.1	.0	Δ

- Stock item
- Stock item only in one version
- Δ Delivery term upon request, minumum purchase order quantity 5 pcs.

Complementary products							
	CrazyDrill Flexpilot Steel	p.12					
	CrazyDrill Crosspilot	p.17					

398 MANIKRON TOOL

www.mikrontool.com | 399

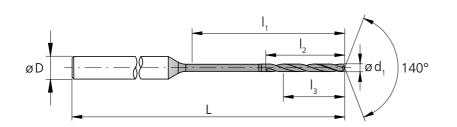
CRAZYDRILL**

Flex

Steel - 20 x d - coated / uncoated

DRILLING WITH EXTERNAL COOLING

Carbide



0.1 - 1.2 mm - 0.003 mm

Tolerance - 0.006 mm

d ₁	$\mathbf{d}_{\scriptscriptstyle{1}}$	I ₁	l ₂	I ₃	D (h6)	L	Item number	pa	ated	Availability
[mm]	[inch]	[mm]	[mm]	[mm]	[mm]	[mm]	number	Coated	Uncoated	Avail
0.47		9.4	4.9	3.8	3	45	2.CFS.20047	.1	.0	Δ
0.48		9.6	5.0	3.8	3	45	2.CFS.20048	.1	.0	Δ
0.49		9.8	5.1	3.9	3	45	2.CFS.20049	.1	.0	Δ
0.50		10.0	5.3	4.0	3	50	2.CFS.20050	.1	.0	
0.51		10.2	5.4	4.1	3	50	2.CFS.20051	.1	.0	Δ
0.52		10.4	5.5	4.2	3	50	2.CFS.20052	.1	.0	Δ
0.53		10.6	5.6	4.2	3	50	2.CFS.20053	.1	.0	Δ
0.54		10.8	5.7	4.3	3	50	2.CFS.20054	.1	.0	Δ
0.55		11.0	5.8	4.4	3	50	2.CFS.20055	.1	.0	•
0.56		11.2	5.9	4.5	3	50	2.CFS.20056	.1	.0	Δ
0.57		11.4	6.0	4.6	3	50	2.CFS.20057	.1	.0	Δ
0.58		11.6	6.1	4.6	3	50	2.CFS.20058	.1	.0	Δ
0.59		11.8	6.2	4.7	3	50	2.CFS.20059	.1	.0	Δ
0.60		12.0	6.3	4.8	3	50	2.CFS.20060	.1	.0	
0.61		12.2	6.4	4.9	3	50	2.CFS.20061	.1	.0	Δ
0.62		12.4	6.5	5.0	3	50	2.CFS.20062	.1	.0	Δ
0.63		12.6	6.6	5.0	3	50	2.CFS.20063	.1	.0	Δ
0.64		12.8	6.7	5.1	3	50	2.CFS.20064	.1	.0	Δ
0.65		13.0	6.8	5.2	3	50	2.CFS.20065	.1	.0	•
0.66		13.2	6.9	5.3	3	50	2.CFS.20066	.1	.0	Δ
0.67		13.4	7.0	5.4	3	50	2.CFS.20067	.1	.0	Δ
0.68		13.6	7.1	5.4	3	50	2.CFS.20068	.1	.0	Δ
0.69		13.8	7.2	5.5	3	50	2.CFS.20069	.1	.0	Δ
0.70		14.0	7.4	5.6	3	53	2.CFS.20070	.1	.0	
0.71		14.2	7.5	5.7	3	53	2.CFS.20071	.1	.0	Δ
0.72		14.4	7.6	5.8	3	53	2.CFS.20072	.1	.0	Δ
0.73		14.6	7.7	5.8	3	53	2.CFS.20073	.1	.0	Δ
0.74		14.8	7.8	5.9	3	53	2.CFS.20074	.1	.0	Δ
0.75		15.0	7.9	6.0	3	53	2.CFS.20075	.1	.0	•
0.76		15.2	8.0	6.1	3	53	2.CFS.20076	.1	.0	Δ
0.77		15.4	8.1	6.2	3	53	2.CFS.20077	.1	.0	Δ
0.78		15.6	8.2	6.2	3	53	2.CFS.20078	.1	.0	Δ
0.79		15.8	8.3	6.3	3	53	2.CFS.20079	.1	.0	Δ
0.793	1/32	16.0	8.4	6.4	3	53	2.CFS.20F132	.1	-	
0.80		16.0	8.4	6.4	3	53	2.CFS.20080	.1	.0	•
0.81		16.2	8.5	6.5	3	53	2.CFS.20081	.1	.0	Δ
0.82		16.4	8.6	6.6	3	53	2.CFS.20082	.1	.0	Δ
0.83		16.6	8.7	6.6	3	53	2.CFS.20083	.1	.0	Δ

■ Stock item

■ Stock item only in one version

 Δ Delivery term upon request, minumum purchase order quantity 5 pcs.

d₁	I ₁	I ₂	l ₃	D (h6)	L	Item number	Coated	Uncoated	Availability
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		Ö	'n	Š
0.84	16.8	8.8	6.7	3	53	2.CFS.20084	.1	.0	Δ
0.85	17.0	8.9	6.8	3	54	2.CFS.20085	.1	.0	•
0.86	17.2	9.0	6.9	3	54	2.CFS.20086	.1	.0	Δ
0.87	17.4	9.1	7.0	3	53	2.CFS.20087	.1	.0	Δ
0.88	17.6	9.2	7.0	3	53	2.CFS.20088	.1	.0	Δ
0.89	17.8	9.3	7.1	3	53	2.CFS.20089	.1	.0	Δ
0.90	18.0	9.5	7.2	3	53	2.CFS.20090	.1	.0	•
0.91	18.2	9.6	7.3	3	53	2.CFS.20091	.1	.0	Δ
0.92	18.4	9.7	7.4	3	53	2.CFS.20092	.1	.0	Δ
0.93	18.6	9.8	7.4	3	53	2.CFS.20093	.1	.0	Δ
0.94	18.8	9.9	7.5	3	53	2.CFS.20094	.1	.0	Δ
0.95	19.0	10.0	7.6	3	53	2.CFS.20095	.1	.0	•
0.96	19.2	10.1	7.7	3	53	2.CFS.20096	.1	.0	Δ
0.97	19.4	10.2	7.8	3	53	2.CFS.20097	.1	.0	Δ
0.98	19.6	10.3	7.8	3	53	2.CFS.20098	.1	.0	Δ
0.99	19.8	10.4	7.9	3	53	2.CFS.20099	.1	.0	Δ
1.00	20.0	10.5	8.0	3	60	2.CFS.20100	.1	.0	
1.01	20.2	10.6	8.1	3	60	2.CFS.20101	.1	.0	Δ
1.02	20.4	10.7	8.2	3	60	2.CFS.20102	.1	.0	Δ
1.03	20.6	10.8	8.2	3	60	2.CFS.20103	.1	.0	Δ
1.04	20.8	10.9	8.3	3	60	2.CFS.20104	.1	.0	Δ
1.05	21.0	11.0	8.4	3	60	2.CFS.20105	.1	.0	•
1.06	21.2	11.1	8.5	3	60	2.CFS.20106	.1	.0	Δ
1.07	21.4	11.2	8.6	3	60	2.CFS.20107	.1	.0	Δ
1.08	21.6	11.3	8.6	3	60	2.CFS.20108	.1	.0	Δ
1.09	21.8	11.4	8.7	3	60	2.CFS.20109	.1	.0	Δ
1.10	22.0	11.6	8.8	3	60	2.CFS.20110	.1	.0	•
1.11	22.2	11.7	8.9	3	60	2.CFS.20111	.1	.0	Δ
1.12	22.4	11.8	9.0	3	60	2.CFS.20112	.1	.0	Δ
1.13	22.6	11.9	9.0	3	60	2.CFS.20113	.1	.0	Δ
1.14	22.8	12.0	9.1	3	60	2.CFS.20114	.1	.0	Δ
1.15	23.0	12.1	9.2	3	60	2.CFS.20115	.1	.0	•
1.16	23.2	12.2	9.3	3	60	2.CFS.20116	.1	.0	Δ
1.17	23.4	12.3	9.4	3	60	2.CFS.20117	.1	.0	Δ
1.18	23.6	12.4	9.4	3	60	2.CFS.20118	.1	.0	Δ
1.19	23.8	12.5	9.5	3	60	2.CFS.20119	.1	.0	Δ
1.20	24.0	12.6	9.6	3	60	2.CFS.20120	.1	.0	

■ Stock item Δ Delivery term upon request, minumum purchase order quantity 5 pcs.

Complementary products CrazyDrill Flexpilot Steel p.129 CrazyDrill Crosspilot

400 | IMMIKRON TOOL

Recommended: CrazyDrill Flex Titanium 30 x d1

Recommended: CrazyDrill Flex Titanium 30 x d1

Recommended: CrazyDrill Flex SST-Inox 30 x d1

3.7035

3.7065

3.7165

9.9367

2.4964

1.2510

Titanium pure

Titanium alloys

CrCo alloys

Hardened steel < 55 HRC

Hardened steel ≥ 55 HRC

Gr.2

Gr.4

TiAl6V4

TiAl6Nb7

CoCr20W15Ni

100MnCrMoW4

X153CrMoV12

CrCoMo28

ASTM B348 / F67

ASTM B348 / F68 ASTM B348 / F136

ASTM F1295

ASTM F1537

Haynes 25

AISI O1

AISI D2

DRILLING TOOLS

CRAZYDRILL FLEX

211				NG DATA OVERVIE				f [mm/rev]						
Mataria	V _c					Q ₁	Qx	0.2	0.2		Ød1	0.0	1.0 1.3	
Materials group Ma	Material	Mat. no.	DIN	AISI/ASTM/UNS	[m/r	min]			0.2 mm	0.3 mm	0.4 mm 1/64"	0.6 mm	0.8 mm 1/32"	1.0 mm-1.2 mm
5 .					Ød1≤0.4	Ød1>0.4			f	f	f	f	f	f
		1.0301	C10	AISI 1010										
P	Linellaved serben	1.0401	C15	AISI 1015										
	Unalloyed carbon steel	1.1191	C45E/CK45	AISI 1045	5 – 40	40 – 60	7xd1	0.5xd1	0.005	0.010	0.015	0.030	0.040	0.060
	Rm < 800 N/mm ²	1.0044	S275JR	AISI 1020										
		1.0715	11SMn30	AISI 1215										
		1.5752	15NiCr13	ASTM 3415 / AISI 3310										
		1.7131	16MnCr5	AISI 5115										
	Low alloyed steel	1.3505	100Cr6	AISI 52100	5 – 25	25 – 50	7xd1	0.5xd1	0.003 - 0.005	0.008 - 0.010	0.012 - 0.015	0.020 - 0.025	0.035	0.050
	Rm > 900 N/mm ²	1.7225	42CrMo4	AISI 4140										0.030
		1.2842	90MnCrV8	AISI O2										
		1.2379	X153CrMoV12	AISI D2										
	High alloyed tool	1.2436	X210CrW12	AISI D4/D6				l						0.040
Qx	steel Rm < 1200 N/mm ²	1.3343	HS6-5-2C	AISI M2 / UNS T11302	5 – 20	20 – 35	7xd1	1xd1	0.004	0.008	0.010	0.015	0.025	
		1.3355	HS18-0-1	AISI T1 / UNS T12001										
x	Stainless steel	1.4016	X6Cr17	AISI 430 / UNS S43000										
M	ferritic	1.4105	X6CrMoS17	AISI 430F										
	Stainless steel	1.4034	X46Cr13	AISI 420C										
	martensitic	1.4112	X90CrMoV18	AISI 440B										
	Stainless steel	1.4542	X5CrNiCuNb 16-4	AISI 630 / ASTM 17-4 PH						_				
	martensitic – PH	1.4545	X5CrNiCuNb 15-5	ASTM 15-5 PH						Recor	nmended: Crazy	yDrill Flex SST-Ino	x 30 x d1	
		1.4301	X5CrNi 18-10	AISI 304										
	Stainless steel	1.4435	X2CrNiMo 18-14-3	AISI 316L										
	austenitic	1.4441	X2CrNiMo 18-15-3	AISI 316LM										
		1.4539	X1NiCrMoCu 25-20-5											
		0.6020	GG20	ASTM 30										
1/		0.6030	GG30	ASTM 40B	5 – 40	50 – 100	7xd1		1xd1 0.005	0.010	0.015	0.020	0.035	0.050
K	Cast iron	0.7040	GGG40	ASTM 60-40-18				kd1 1xd1						
		0.7040	GGG60	ASTM 80-60-03		40 – 80								
	A1 :: II													
IN II	Aluminium alloy wrought	3.2315 3.4365	AlMgSi1 AlZnMgCu1.5	ASTM 6351 ASTM 7075	5 – 40	60 – 120	7xd1	1xd1	0.015	0.040	0.050	0.080	0.100	0.120
N		3.4363	GD-AlSi9Cu3	ASTM A380										
	Aluminium alloy cast	3.2103	GD-AlSi9Cu3 GD-AlSi10Mg	UNS A03590	5 – 40	50 - 80	7xd1	1xd1	0.015	0.040	0.050	0.080	0.100	0.120
	Cust	2.004	Cu-OF / CW008A	UNS C10100										
	Copper	2.004	Cu-ETP / CW004A	UNS C11000						Recon	nmended: Crazy	Drill Flex Titaniun	n 30 x d1	
		2.0003	CuZn37 CW508L	UNS C27400										
	Brass lead free	2.0321	CuZn40 CW509L	UNS C28000						Recor	mmended: Crazy	yDrill Flex SST-Inox	x 30 x d1	
	Prace Pranza	2.030	CuZn39Pb3 / CW614I			60 – 100								
	Brass, Bronze Rm < 400 N/mm ²	2.102	CuSn6	UNS C51900	5 – 40	40 – 60	7xd1	1xd1	0.010	0.030	0.040	0.060	0.080	0.100
		2.0966	CuAl10Ni5Fe4	UNS C63000										
	Bronze Rm < 600 N/mm ²	2.0966	CuAl9Mn2	UNS C63200	5 – 20	20 – 40	2.5xd1	0.5xd1	0.004	0.006	0.010	0.015	0.025	0.040
	11111 \ 000 14/11		CUMISIVIIIZ							1				
		2.4856		Inconel 625										
5.	Super alloys	2.4668	NiMa20	Inconel 718						Recor	nmended: Crazy	yDrill Flex SST-Inox	x 30 x d1	
		2.4617	NiMo28	Hastelloy B-2										
		2.4665	NiCr22Fe18Mo	Hastelloy X										

CRAZYDRILL"

Flex

402 | Infimikron tool

Drilling process CrazyDrill Flex

PRECISE AND EFFICIENT DRILLING FROM Ø 0.1 MM

Coolant type, pressure and filtration

DRILLING TOOLS

CRAZYDRILL FLEX

Coolant type: For best results, Mikron Tool recommends the use of cutting oil as coolant fluid. Alternatively, emulsion of 8% or more with EP-Additives (Extreme-Pressure-Additives) can be used with good results as well.

Filter: The large cooling channels allow a standard filter. Filter quality ≤ 0.050 mm.

For tools with external cooling no specific parameters have to be considered concerning filter.

Coolant pressure: To ensure a reliable drilling process, the following minimal pressures are needed (see chart). Higher pressure is generally better for the cooling and flushing effect.

Revolution	[giri/min]	≤ 10′000	> 10′000
Minimal pressur	r e [bar]	15	30

For tools with external cooling no specific parameters have to be considered concerning coolant pressure. But it must be ensured that the coolant is conducted directly to the drill tip, thus cooling and lubricating the drill perfectly and flushing away the chips.

Tool holders

CRAZYDRILL

RAZYDRILL

For detailed indications for tool holders see chapter "Technical information".

Drilling process CrazyDrill Flex

PRECISE AND EFFICIENT DRILLING FROM Ø 0.1 MM

CrazyDrill Flex 20 x d, 30 x d, 50 x d

Mikron Tool recommends pilot drilling for all types of CrazyDrill Flex:

CrazyDrill Flex SST-Inox

DRILLING TOOLS

CRAZYDRILL FLEX

- CrazyDrill Pilot SST-Inox as pilot drill
- CrazyDrill Crosspilot as pilot drill on inclined surfaces

CrazyDrill Flex Steel

- CrazyDrill Flexpilot Steel as pilot drill
- CrazyDrill Crosspilot as pilot drill on inclined surfaces

CrazyDrill Flex Titanium

- CrazyDrill Flexpilot Titanium as pilot drill
- **CrazyDrill Crosspilot** as pilot drill on inclined surfaces

Pilot drilling and drilling

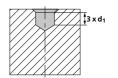
Pilot drilling with CrazyDrill Flexpilot / CrazyDrill Pilot SST-Inox is the perfect starting point for accurate drilling (position and alignment accuracy) and a stable machining process. This is also valid for the pilot drill CrazyDrill Crosspilot on inclined surfaces.

The quality of drilling (position and alignment accuracy, no measurable transition from pilot hole to follow-up hole) and a stable machining process are guaranteed by means of a predetermined tool.

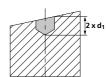
DRILLING PROCESS

CRAZYDRILL

RAZYDRILL

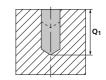

Drilling as per DIN 66025 / PAL

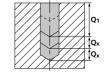
G83 deep-drilling cycle with chip break and chip removal (pecks)


Q = depth of the respective peck

1 | PILOT DRILLING

- With CrazyDrill Pilot SST-Inox (straight surfaces) or CrazyDrill Crosspilot (inclined surfaces) for the version CrazyDrill Flex SST-Inox.
- With CrazyDrill Flexpilot Steel resp. Titanium (straight surfaces) or CrazyDrill Crosspilot (inclined surfaces) for the version CrazyDrill Flex Steel resp. Titanium.





2 | DRILLING

Drilling with CrazyDrill Flex SST-Inox / CrazyDrill Flex Steel / Titanium up to maximum drilling depth Q₁ in one step (see cutting data table), with subsequent chip removal.

Further drilling steps Q_X as per cutting data table, with subsequent chip removal.

Note

Between the drilling steps, the drill may exit completely from the bore. Do not take the drill completely out from the bore in case of resonant vibration. After the drill reached desired cutting depth, return at increased feed rate (or in case of perfect conditions rapid traverse) to safety position.

448 INFMIKRON TOOL www.mikrontool.com | 449